Check, Test & Start-up

Instructor: Josh Goodman Josh.goodman@carrierenterprise.com

AGENDA

- Tools/Startup
- Airflow calculation
 - Elec. Heat method
 - Clocking the gas meter
 - Static pressure
- Basic Refrigeration
- Total System Capacity

TOOLS

- Tool bag
- Gloves
- Safety glasses
- Nut drivers (¼, 5/16, 3/8)
- Pocket Thermometers
- Screw drivers(Philips and regular)
- 2-10" adjustable wrenches
- Open ended wrench (3/8, 1/2, 5/8)
- Electrician/Lineman's Pliers
- Channel locks
- Side cutters
- Wire stripper
- Box cutter
- Allen wrenches (folding)
- Refrigeration wrench and attachment

- Refrigeration Cap Key's
- Brush
- Spray bottle
- Water hose and nozzle
- Torpedo level
- PVC cutters
- Tube cutters
- Flaring kit
- Tube benders
- Electronic Leak detector
- Psychrometer
- Torch
- Vacuum Pump
- Refrigerant Gauges
- And many others

VOLT/AMP METERS

VOLT/AMP METERS

REFRIGERANT GAUGES AND HOSES

Analogy vs Digital

NITROGEN

Always use nitrogen when brazing. Just 1-2 lbs moving thru the tubes while brazing Pressure test systems to 400 psig Pressure test Ductless systems to 500 psig

NOT USING NITROGEN

TORCHES

VACUUM PUMPS/RECOVERY

Visit Yellowjacket.com or the manufacture of your vacuum pumps website for videos and tips

VACUUM

A95424

Deep Vacuum Method

The deep vacuum method requires a vacuum pump capable of pulling a vacuum of 500 microns and a vacuum gage capable of accurately measuring this vacuum depth. The deep vacuum method is the most positive way of assuring a system is free of air and liquid water. A tight dry system will hold a vacuum of 1000 microns after approximately 7 minutes. (See Fig. 8.)

Fig. 8 – Deep Vacuum Graph

AIRFLOW MEASUREMENT

An accurate airflow measurement <u>must</u> be performed before the system can be properly charged with refrigerant or before any attempt is made to measure performance.

400 CFM/Ton Cooling +/- 50 cfm

MEASUREMENT METHODS

- Temperature Rise
 - Air Handler electric resistance heat
 - Clocking a gas meter
 Natural gas furnaces
- Total Static Pressure

THE PERFECT SERVICE VISIT

- Upon arrival meet & greet the homeowner
 - Ask discover questions
 - Why am I here? Any unusual sounds or operation?
- Place the thermostat in the Emergency heat position
- Go to the indoor unit, operate the system for 10 mins.
- Measure the supply voltage, Aux heat amp draw, and measure the temp split of the Aux heat only. Inspect the coil, filter, drain pans and see what type of metering device the indoor unit has.

AIRFLOW MEASUREMENT

Electric heat air flow formula

Formula:

 $CFM = \frac{Voltage x Amperage x 3.414}{1.08 x Temperature Rise (\triangle T)}$

This is the easy way to do it on your calculator You do not have to worry about all those extra numbers after the decimal point like when using the above equation.

Volts x Amps x 3.414 / 1.08 / Delta T(temp rise) = CFM

Write it down, save it, memorize it, store it, print it, keep it, add it to your toolbox!!! Make money \$\$\$ with it!!!

ELECTRIC HEAT METHOD

VOLTS X AMPERES = WATTS

1 WATT = 3.414 BTU's

VOLTS X AMPS X 3.414 = BTUH (OUTPUT)

TAKING TEMPERATURES

HEAT PUMP AIR HANDLER

MEASUREMENTS

- Service Tip
 - On average we should see
 - approx. 20 amps per 5 Kw of elec. heat.
 - 10 amps per 2.5 Kw of elec. Heat.
 - 1ph

Air Handler Supply Voltage: 244 Volts Air Handler Section Amperage: 38 Amps Supply Air Temp: 105F Return Air Temp: 74F

- 1. 244 Volts x 38 Amps x 3.414= 31,654 BTUH Output
- 2. 105F 74F = 31F (△T)
- 3. <u>31654</u> 1.08 x 31

Voltage = 244 Volts Amperage draw = 38 Amps

Example 1

Volts x Amps = Watts

244 volts x 38 amps = 9,272 watts

WATTS X 3.414 = BTUH (OUTPUT)

9,272 x 3.414 = 31,654 BTUH

CFM =	<u>BTUH (OUTPUT)</u> 1.08 x Delta T
CFM =	<u>31,654</u> 1.08 x 31°
CFM =	<u>31,654</u>
	33.48
CFM =	945

Formula:

 $CFM = \frac{Voltage x Amperage x 3.414}{1.08 x Temperature Rise (\triangle T)}$

Air Handler Supply Voltage: 238 Volts Air Handler Section Amperage: 58 Amps Supply Air Temp: 108F Return Air Temp: 68F

1. 238 Volts x 58 Amps x 3.414= 47,127 BTUH Output

= 1090 CFM

- 2. 108F 68F = 40F (△T)
- 3. 47,127 1.08 x 40

4. <u>47,127</u> <u>43.2</u>

Voltage = 238 Volts Amperage draw = 58 Amps

Volts x Amps = Watts

238 volts x 58 amps = 13,804 watts

WATTS X 3.414 = BTUH (OUTPUT)

13,804 x 3.414 = 47,127 BTUH

CFM =	<u>BTUH (OUTPUT)</u> 1.08 x Delta T
CFM =	<u>47,127</u> 1.08 x 40°
CFM =	<u>47,127</u> 43.2
CFM =	1090

Airflow Measurement

CFM Formula

CFM = 1.08 X TEMP DIFFERENCE

The easiest way to verify output of a Gas Furnace is to verify input.

MEASUREMENT METHODS

- Natural gas furnaces
 - Clock the gas meter

or

- Measure Manifold pressure
- Oil and LP furnaces
 - LP furnace, you need to verify manifold gas pressure
 - Oil furnace, check nozzle and pump pressure see charts.

Gas Furnace Input

Gas Furnace Input

- Make sure no other appliances are on during the test.
- Set the thermostat to heat mode and 90 degrees.
- Record the seconds required to consume 1 cubic foot of gas on the meter
- The furnace must run for 15 mins on high stage
- Determine temperature rise between the supply and return air.

BTU'S PER A CUBIC FOOT OF NATURAL GAS

The BTU content per a cubic foot of natural gas fluctuates daily

For todays examples we will use 1050 per a cu. Ft.

			1	Virginia	Heat Co	ntent of	Natural	Gas Deli	veries to	Consu	mers (B	TU per
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2013	1,038	1,032	1,033	1,028	1,030	1,039	1,043	1,038	1,043	1,042	1,046	1,045
2014	1,044	1,040	1,039	1,041	1,038	1,040	1,041	1,040	1,038	1,046	1,055	1,054
2015	1,056	1,053	1,051	1,045	1,055	1,055	1,056	1,054	1,055	1,053	1,051	1,057
2016	1,055	1,055	1,056	1,052	1,054	1,052	1,054	1,054	1,053	1,052	1,055	1,054
2017	1,057	1,052	1,057	1,055	1,051	1,052	1,051	1,051	1,050	1,051	1,052	1,057
2018	1,053	1,049	1,056	1,050	1,048	1,051	1,046	1,050	1,049	1,050	1,056	1,061
2019	1,055	1,056	1,057	1,053	1,049	1,048	1,049	1,050	1,046	1,051	1,050	1,053
2020	1,052	1,052	1,051	1,047	1,046	1,049	1,045	1,046	1,051	1,047		

			N	laryland	Heat Co	ontent of	Natural	Gas De	liveries t	to Consu	ımers (B	TU per
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2013	1,041	1,037	1,032	1,027	1,037	1,042	1,060	1,056	1,062	1,059	1,061	1,059
2014	1,053	1,048	1,045	1,049	1,047	1,052	1,051	1,051	1,049	1,052	1,057	1,057
2015	1,059	1,061	1,058	1,051	1,058	1,057	1,055	1,049	1,050	1,053	1,049	1,050
2016	1,061	1,055	1,050	1,048	1,047	1,046	1,052	1,051	1,046	1,042	1,045	1,050
2017	1,054	1,056	1,055	1,043	1,046	1,041	1,044	1,047	1,045	1,042	1,038	1,048
2018	1,051	1,043	1,052	1,045	1,041	1,038	1,040	1,034	1,035	1,035	1,045	1,042
2019	1,050	1,050	1,050	1,045	1,039	1,036	1,039	1,040	1,036	1,036	1,045	1,048
2020	1,047	1,045	1,041	1,038	1,035	1,036	1,040	1,038	1,036	1,034		

This information was found on EIA.gov US Energy Information Administration Or Cematraining.com

Gas Furnace Input

The Ultimate GOAL Example

How long does it take to consume 1 cubic foot of gas in seconds

60 Minutes in an hour, and 60 seconds in a minute = 3600 seconds in an hour

3600 / seconds = cubic feet of gas per an hour

=

Cubic feet per an hour X 1050(specific heat content per a cubic foot AVG)

=

BTUH input

Excludes Dry wells, always contact the supplier for the daily heat content

Gas Furnace Input

The Ultimate GOAL Example

How long does it take to consume 1 cubic foot of gas in seconds

60 Minutes in an hour, and 60 seconds in a minute = 3600 seconds in an hour

3600 / **38** seconds = **95** cubic feet

=

95 X 1050(avg)

=

99,750 BTUH input

Excludes Dry wells, always contact the supplier for the daily heat content

It takes 57 seconds to consume 1 cubic foot of gas

It takes 42 seconds to consume 1 cubic foot of gas

We clocked the meter, and it takes 32 seconds to consume 1 cubic foot of gas

3600 / 32 sec = 112.5 cubic feet consumed per an hour

112.5 X 1050 (avg BTU content per a cu. ft.) = 118,125 BTUH input

Airflow Calculation 80% Furnace

Formula: $CFM = \frac{BTUH OUTPUT}{1.08 \text{ x Temperature Rise } (\triangle T)}$

BTUH: 96,000 tag says Output Supply Air Temp: 120F Return Air Temp: 65F

- 1. 120F 65F = 55F (△T)
- 2. 96,000 1.08 x 55
- $\frac{96,000}{59.4} = 1616 \text{ CFM}$

We clocked the meter, and it takes 46 seconds to consume 1 cubic foot of gas

3600 / 46 sec = 78 cubic feet consumed per an hour

78 X 1050 (avg BTU content per a cu. ft.) = 81,900 BTUH input

Airflow Calculation 90%

For CFM	rmula: 1 =
BTUH	H: 72,000 tag says Output
Supp	bly Air Temp: 120F
Retu	rn Air Temp: 65F
1.	120F - 65F = 55F (△T)
2.	72,000
	1.08 x 55
3.	72,000 = 1220 CFM
	59

CLOCKING THE GAS METER

We clocked the meter, and it takes 62 seconds to consume 1 cubic foot of gas

3600 / 62 sec = 58 cubic feet consumed per an hour

58 X 1050 (avg BTU content per a cu. ft.) = 60,900 BTUH input

Airflow Calculation 96%

BTUH: 57,600 tag says Output

Supply Air Temp: 133F

Return Air Temp: 72F

1.	133F - 72F = 61F	(∆ T)
----	------------------	---------------

2. 57,600 1.08 x 61

 $\frac{57,600}{65.88} = 874 \text{ CFM}$

THE BLOWER / STATIC PRESSURE

- Provides the pressure difference to force the air into the duct system, through the grilles and registers, and into the room
- Typically, 400 cfm of air must be moved per minute per ton of air conditioning
- Pressure in the ductwork is measured in inches of water column (in. W.C)
- Air pressure in the ductwork is measured with a manometer

AIR HANDLER /INCHES WC

BLOWER PERFORMANCE DATA

PERFORMANCE DATA

FB4C AIRFLOW PERFORMANCE (CFM)

MODEL & SIZE	BLOWER SPEED	0.10	0.20	0.30	0.40	0.50	0.60
	Tap 5	767	739	702	669	620	565
	Tap 4	614	569	534	486	436	398
FB4C 018	Тар 3	701	660	616	581	537	499
	Tap 2	614	569	534	486	436	398
	Tap 1	410	350	304	261	228	203
	Tap 5	969	936	892	835	763	676
	Tap 4	826	795	766	743	706	660
FB4C 024 & 025	Tap 3	826	795	766	743	706	660
	Tap 2	701	660	616	581	537	499
	Tap 1	617	592	552	507	472	420
	Tap 5	1108	1090	1065	1034	1009	974
	Tap 4	1026	1000	969	938	899	865
FB4C 030	Tap 3	1026	1000	969	938	899	865
	Tap 2	909	873	842	799	762	724
	Tap 1	825	795	757	722	674	634

Air Handler

Return Static

Example: FE4A UI Calculated CFM 906 Total static .84

Airflow Verification test

BLOWER PERFORMANCE DATA

For satisfactory operation (specifically making dry secondary trap), subject fan coils must be installed with duct systems which fall within the "Acceptable Range" illustrated above.

MINIMUM RPM TABLE

MAXIMUM STATIC TABLE

MODEL	SYSTEM SIZES	CFM RANGE	MIN RPM
FE4ANF002	018, 024, 030, 036	150 - 1200	300
FE4AN(B,F)003	024, 030, 036, 042	200 - 1400	285
FE4AN(B,F)005	030, 036, 042, 048	250 - 1600	275
FE4ANB006	036, 042, 048, 060	500 - 2000	275
FE5ANB004	024, 030, 036, 042	500 - 1400	275

MODEL	AIRFLOW DELIVERY	AVAILABLE STATIC PRESSURE
	525 CFM	1.00 in wc
ſ	700 CFM	1.00 in wc
FE4ANF002	875 CFM	1.00 in wc
Γ	1050 CFM	0.80 in wc
ſ	1200 CFM	0.60 in wc
	700 CFM	1.00 in wc
[875 CFM	1.00 in wc
FE4AN(B,F)003	1050 CFM	1.00 in wc
[1225 CFM	1.00 in wc
[1400 CFM	0.80 in wc
	875 CFM	1.00 in wc
[1050 CFM	1.00 in wc
FE4AN(B,F)005	1225 CFM	1.00 in wc
[1400 CFM	1.00 in wc
	1600 CFM	0.50 in wc

Plexi-glass can be used as a tool for troubleshooting condensate concerns

GAS FURNACE /INCHES WC

GAS FURNACE /INCHES WC

BLOWER PERFORMANCE DATA

AIR DELIVERY – CFM (With Filter)

	FURNACE	RETURN-AIR	SPEED	EXTERNAL STATIC PRESSURE (In. W.C.)										
	SIZE	INLET	SILLD	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
	045-08	Bottom or Side(s)	High Med—High Med—Low	1035 865 760	995 830 720	945 790 680	895 745 635	835 690 580	770 625 520	675 545 445	565 440 345	390 250 220	195 195 195	
	045–12	Bottom or Side(s)	High Med—High Med—Low	1440 1360 1250	1375 1300 1210	1305 1240 1160	1240 1175 1100	1160 1115 1040	1070 1040 965	975 950 885	870 850 790	730 725 670	560 575 520	
/	070–08	Bottom or Side(s)	High Med—High Med—Low	1030 835 725	1005 815 700	965 790 675	925 755 635	870 710 595	810 660 545	740 590 460	645 480 350	465 325 250	280 205 ——	
	070–12	Bottom or Side(s)	High Med—High Med—Low	1425 1320 1200	1375 1280 1175	1320 1240 1145	1265 1205 1105	1200 1140 1050	1125 1075 990	1035 995 920	940 905 840	830 790 725	655 620 555	
	070–16	Bottom or Side(s)	High Med—High Med—Low	1755 1550 1355	1700 1520 1340	1635 1475 1310	1570 1430 1280	1505 1375 1240	1435 1310 1190	1350 1240 1125	1260 1155 1060	1160 1070 975	1055 970 890	
	090-14	Bottom or Side(s)	High Med—High Med—Low	1605 1470 1310	1570 1445 1295	1535 1410 1265	1465 1380 1230	1385 1300 1195	1285 1220 1120	1175 1115 1025	1055 990 915	895 830 710	645 600 565	
	090–16	Bottom or Side(s)	High Med—High Med—Low	1940 1740 1505	1880 1700 1505	1805 1650 1480	1720 1590 1440	1635 1525 1375	1540 1440 1300	1425 1335 1190	1290 1195 1045	1090 1010 890	830 820 740	

AIRFLOW

Knowing the true airflow and static pressure is the key to resolving comfort complaints and possible equipment related concerns

AIRFLOW

A few tips to remember

Always take measurements at the system not the grills

Always take temperatures at the unit with the same probe

Your return static should always be below your supply static

The lower the static, the lower the wattage of the motor

A noisy supply or return are easy signs of an airflow issue

Return static should never be over -.4 in Wc

When looking at temperature splits unit give a design temperature range to operate in 35-65, 40-70 and etc. When running on the high end of the temp split. You might get periodic calls from time to time of a furnace locking out on Code 13 or 33.

THE PERFECT SERVICE VISIT

- Upon arrival meet & greet the homeowner
 - Ask discover questions
 - Why am I here? Any unusual sounds or operation?
- Place the thermostat in the Emergency heat position
- Go to the indoor unit, operate the system for 10 mins.
- Measure the supply voltage, Aux heat amp draw, and measure the temp split of the Aux heat only. Inspect the coil, filter, drain pans and see what type of metering device the indoor unit has.
- Calculate CFM, make any adjustments needed to meet target airflow, 400 cfm +/- 50 cfm per a ton before proceeding
- CFM Validated

THE PERFECT SERVICE VISIT

- Upon arrival meet & greet the homeowner
 - Ask discover questions
 - Why am I here? Any unusual sounds or operation?
- Place the thermostat in the Emergency heat position
- Go to the indoor unit, operate the system for 10 mins.
- Measure the supply voltage, Aux heat amp draw, and measure the temp split of the Aux heat only. Inspect the coil, filter, drain pans and see what type of metering device the indoor unit has.
- Calculate CFM, make any adjustments needed to meet target airflow, 400 cfm +/- 50 cfm per a ton before proceeding
- CFM Validated
- Place the unit in cooling mode and measure your return DB and WB temperatures

Refrigerant Charging

Air Handler Supply

CFM: 945

Supply Air Temp: DB WBF

Return Air Temp: DB 64.3 WBF

CE

THE PERFECT SERVICE VISIT

- Upon arrival meet & greet the homeowner
 - Ask discover questions
 - Why am I here? Any unusual sounds or operation?
- Place the thermostat in the Emergency heat position
- Go to the indoor unit, operate the system for 10 mins.
- Measure the supply voltage, Aux heat amp draw, and measure the temp split of the Aux heat only. Inspect the coil, filter, drain pans and see what type of metering device.
- Calculate CFM, make any adjustments needed to meet target airflow, 400 cfm +/- 50 cfm per a ton before proceeding
- CFM Validated
- Place the unit in cooling mode and measure your return DB and WB temperature
- Allow the unit to run in cooling for 15 mins, every system, every type of metering device and measure the Hi and Low pressures and the Liquid and Vapor line temperatures.

BASIC REFRIGERATION

• Before we go on, now let's look at the refrigerant cycle operation

Condenser

Condenser

The condenser has three jobs:

1.De-superheat the refrigerant (Drop the temperature down to the condensing temperature)

2.Condense (saturate) the refrigerant (Reject heat until all the refrigerant turns to liquid)

3.Subcool the refrigerant (Drop the temperature of the refrigerant below the

condensing / saturation temperature)

Condenser

Different equipment efficiencies will have different target **Condensing Temperature Over Ambient** (CTOA) readings. Keep in mind that these date ranges don't guarantee the SEER but rather give the date ranges that these efficiencies will be most likely.

> 6 – 10 SEER Equipment (Older than 1991) = 30° CTOA 10 -12 SEER Equipment (1992 – 2005) = 25° CTOA 13 – 15 SEER Equipment (2006 – Present) = 20° CTOA 16 SEER+ Equipment (2006 – Present) = 15° CTOA

Metering Device

Evaporator

Evaporator

The evaporator is also known as the <u>cooling coil</u>, because the **purpose of the evaporator is to absorb heat**. It accomplishes this through the refrigerant changing from liquid to vapor (boiling). This boiling process begins as soon as the refrigerant leaves the metering device, and it continues until the refrigerant has absorbed enough heat to completely finish the change from liquid to vapor. **As long as the refrigerant is boiling it will remain at a constant temperature; this temperature is referred to as** *saturation temperature* **or** *evaporator temperature*. As soon as the refrigerant is done boiling, the temperature starts to rise. This temperature increase is known as *superheat*.

Evaporator

A good rule of thumb for suction pressure is 40° saturation below indoor ambient +/- 5° (*Return temperature measured at the evaporator coil*).

This temperature differential is often called an evaporator split or design temperature difference (DTD)

This 40° rule only works at 400 CFM per ton, when a system is designed for 350 CFM per ton the DTD will be closer to $38^\circ - 40^\circ + -5^\circ$

CHARGING

- There are 3 ways of charging a system
 - Weight
 - Pistons(charged by superheat)
 - Superheat- The amount of heat ADDED to the refrigerant past it's "evaporating temperature"
 - Low pressure side of the system (VAPOR LINE)
 - TXV's(charged by subcooling)
 - Subcooling- The amount of heat **REMOVED** from the refrigerant below it's "condensing temperature"
 - High pressure side of the system (LIQUID LINE)
 - We use our gauges to find the "evaporating" and "condensing" temperatures and a thermometer to measure the temperature of the refrigerant

CHARGING BY WEIGHT

 Unit is factory charged for 15ft of lineset. Adjust charge by adding or removing 0.6 oz/ft of 3/8 liquid line above or below 15ft respectively. For standard refrigerant line lengths (80 ft or less), allow system to operate in cooling mode at least 15 minutes.

0 °

30 °

SuperHeat (PISTION):

The SMALLER the number, the more LIQUID there is in EVAPORATOR COIL.

Determining how much superheat is needed There in no magic number

Measure the outdoor air temperature dry bulb

Measure indoor temperature wet and dry bulb

Use units charging chart or slide calculator to determine super heat required for the above parameters

Used to find required superheat to charge too.

The chart on the inside of the unit panel ALWAYS trumps any slide chart OR phone app!

Table 4—Superheat Charging

				EVA	PORAT	OR ENT	ERING	AIR TEN	IPERAT	URE (°F	WB)			
	50	52	54	56	58	60	62	64	66	68	70	72	74	76
55	9	12	14	17	20	23	26	29	32	35	37	40	42	45
60	7	10	12	15	18	21	24	27	30	33	35	38	40	43
65	-	6	10	13	16	19	21	24	27	30	33	36	38	41
70													36	39
75		Chart in aida tha											34	37
80			6			5	UE			-	25	28	31	35
85											22	26	30	33
90											20	24	27	31
95						nıt					18	22	25	29
100					u	III					15	20	23	27
105		r —		<u> </u>	<u> </u>						13	17	22	26
110	—	—	—	—	_	—	_	—	—	6	11	15	20	25
115	—	_	_	-	_	—	—	—	_	_	8	14	18	23

Where a dash (---) appears, do not attempt to charge system under these conditions or refrigerant slugging may occur. Charge must be weighed in. NOTE: Superheat °F is at low-side service port.

Outdoor dry bulb temperature 85 degrees F Indoor wet bulb 68 degrees F Required super heat is ? 19 Degrees F

	EVAPORATOR ENTERING AIR TEMPERATURE (°F WB)													
OUTDOOR TEMP (F)	50	52	54	56	58	60	62	64	66	68	70	72	74	76
55	9	12	14	17	20	23	26	29	32	30	37	40	42	45
60	7	10	12	15	18	21	24	27	30	33	35	38	40	43
65		6	10	13	16	19	21	24	27	30	33	36	38	41
70	_	_	7	10	13	16	19	21	24	27	30	33	36	39
75		_	_	6	9	12	15	18	21	24	28	31	34	37
80		_	_	_	5	8	12	15	18	2	25	28	31	35
85							8	-11	15	19	22	26	30	33
90	_	_	_	_	_	_	5	9	13	16	20	24	27	31
95				_	_	_		6	10	14	18	22	25	29
100			_	_			—	_	8	12	15	20	23	27
105	_	_		_	_	_		_	5	9	13	17	22	26
110	_	_	_	_	_	_	_	_	—	6	11	15	20	25
115	_	_	—	_	_		—	_	—	_	8	14	18	23
Whara a deah () appears de l		at ta abaw	a avatam	, un el e vite		itiana ar r	ofrigorout	ماريحونيمح		Charge	unuat ha	waighad	ins	

Table 4—Superheat Charging

Where a dash (—) appears, do not attempt to charge system under these conditions or refrigerant slugging may occur. Charge must be weighed in. NOTE: Superheat °F is at low-side service port.

Example 1

R-4	10A	Temp	. & Pro	BSS	ure	Chart
TEMP	R410	TEM	P R410	1	TEM	P R410
-605 -550 -45	$\begin{array}{c} 1.2\\ 3.4\\ 5.8\\ 6.6\\ 11.6\\ 14.9\\ 22.5\\ 26.9\\ 31.7\\ 42.5\\ 48.6\\ 49.9\\ 55.2\\ 55.2\\ 55.2\\ 55.2\\ 55.2\\ 55.2\\ 60.9\\ 62.3\\ 63.8\\ 65.4\\ 66.9\\ 68.5\\ 70.0\\ \end{array}$	16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 4 35 36 37 38 39 40 41 42 43	71.7 73.3 75.0 76.6 80.1 81.8 83.6 85.4 87.3 89.1 91.0 92.9 94.9 94.9 96.8 98.8 102.9 96.8 102.9 105.0 107.1 109.2 111.4 113.6 115.8 118.0 122.6 125.0		44 45 46 47 48 95 55 60 65 70 75 80 85 90 95 100 1105 110 115 1130 1135 1140	127.3 129.7 132.2 134.6 137.1 139.6 142.2 215.5 169.6 200.6 2217.4 235.3 254.1 317.2 340.5 539.0 390.7 445.9 445.9 445.9 539.0 572.8 608.1 645.0

Lo pressure: 120 psi Temp of Vapor Line: 60

Superheat: 19 degrees

- REFRIGERANT VAPOR (GAS) LINE
SUPERHEAT CHARGING

Outdoor dry bulb temperature 75 degrees F Indoor wet bulb 66 degrees F Required super heat is ? 21 Degrees F

	EVAPORATOR ENTERING AIR TEMPERATURE (°F WB)													
	50	52	54	56	58	60	62	64	66	68	70	72	74	76
55	9	12	14	17	20	23	26	29	32	35	37	40	42	45
60	7	10	12	15	18	21	24	27	3 <mark>0</mark>	33	35	38	40	43
65	_	6	10	13	16	19	21	24	27	30	33	36	38	41
70	—	—	7	10	13	16	19	21	₩4	27	30	33	36	39
(75)				6	0	12	15	18	21	24	28	31	34	37
80	_	_		_	5	8	12	15	18	21	25	28	31	35
85		_	_	_	_	_	8	11	15	19	22	26	30	33
90	_	_	_	_	_	_	5	9	13	16	20	24	27	31
95	_	_	_	_	_	_	_	6	10	14	18	22	25	29
100	_	_		_			_	_	8	12	15	20	23	27
105	_	_	_	_	_	_	_	_	5	9	13	17	22	26
110	_	_	_	_	_	_	_	_	_	6	11	15	20	25
115	_	_	—	_	—	_	—	_	—	_	8	14	18	23

Table 4—Superheat Charging

Where a dash (--) appears, do not attempt to charge system under these conditions or refrigerant slugging may occur. Charge must be weighed in. NOTE: Superheat °F is at low-side service port.

SUPERHEAT CHARGING

Lo pressure: 125 psi Temp of Vapor Line: 54

Superheat: 11 degrees

Example 2

R-41	IOA Te	emp.	& Pres	sure	Chart
TEMP	R410	TEMP	R410	TEM	P R410
-60 -55 -50 -45 -40 -35 -30 -25 -20 -25 -20 -5 -10 -5 -25 -20 -25 -25 -20 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25	1.2 3.4 5.8 6.6 11.6 14.9 18.5 22.5 26.9 11.7 362.5 8.8 6.9 9.9 1.2 5.2 5.6 6.6 8.0 9.9 9.4 33.8 5.2 5.6 6.6 8.0 9.9 9.2 33.8 5.6 9.9 9.2 33.8 5.6 9.9 9.2 33.8 5.6 9.9 9.2 5.5 6.6 10.6 9.9 9.2 5.5 5.6 6.6 10.6 9.9 9.2 5.5 5.6 6.6 10.6 9.9 9.2 5.5 5.6 6.6 10.6 9.9 9.2 5.5 5.6 9.9 9.2 5.5 5.6 9.9 9.2 5.5 5.6 9.9 9.2 5.5 5.6 6.6 10.6 9.9 9.9 1.7 7 5.6 6.6 10.6 9.9 9.9 1.7 7 5.6 6.6 10.6 9.9 9.9 1.7 7 5.6 5.6 1.6 9.9 9.9 1.7 7 5.6 5.5 5.5 5.5 1.6 9.9 9.9 1.2 5.5 5.6 6.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 331 35 36 37 36 39 41 42 43	71.7 73.3 75.0 76.6 78.3 80.1 81.8 83.6 85.4 87.3 89.1 91.0 92.9 94.9 94.9 94.9 96.8 98.8 100.8 102.9 94.9 96.8 98.8 100.8 102.9 94.9 95.0 107.1 113.6 115.8 113.6 115.8 113.6 20.3 22.6 25.0	44 45 46 47 48 49 50 55 56 60 65 60 65 60 65 80 85 90 95 95 9100 115 120 135 140 135 155	127.3 129.7 132.2 134.6 137.1 139.6 142.2 155.5 169.6 184.6 200.6 217.4 235.3 254.1 274.1 317.2 340.5 365.0 390.7 417.7 445.9 475.6 506.5 539.0 572.8 608.1 645.0

REFRIGERANT VAPOR (GAS) LINE

SUPERHEAT CHARGING

- If superheat is **above** target superheat **add** refrigerant
- If superheat is **below** target superheat **remove** refrigerant

SUBCOOLING EXPLAINED

SubCooling (TXV):

The **BIGGER** the number, the more **LIQUID** there is in the **CONDENSING COIL**.

ĈE

What is our target subcooling?

SERIAL 1818E15633	
PROD 25HCE424A0030011	and the second second
MODEL 25HCE424A300	10000
HETERING TXU 46 PISTON	and the second se
DEVICE INDOOR OUTDOOR	
FACTORY CHARGED R410A	States Inc.
5.60 LBS 2.54 KG	3
INDOOR TXU SUB COOLING 11	
POHER SUPPLY 208-230 VOLTS AC	
1 PH 60 HZ	
PERMISSIBLE VOLTAGE AT UNIT	
253 MAX 197 MIN	
COMPRESSOR 200 1220 HOLTS OC	
1 PH CO HZ	
10.9 RLA 62 9 LRA	
FAN MOTOR 208/230 VOLTS AC	
1 PH 60 HZ	
1/10 HP 0.60 FLA	
HI 450 PSI 2102	
 LO 250 PSI 1724 KPO	
MAX DESIGN/WORKING PRESSURE	
700 PSIG 4826 KPA	
HAX FUSE MAX CKI-BKD 14.2	
25 A 25 A	
Short Circuit Current:5kA rms.symmetrical, 23e U	
MODEL NUMBER 25HCE424A0030011	

Tip: : Every unit has a +/- of 3 degrees Short line sets should favor the low end Long line sets should favor the hi end ALL system's need to run 15 mins no matter what SEER

CE

CE

- If subcooling is **above** target subcooling **remove** refrigerant
- If subcooling is **below** target subcooling **add** refrigerant
- NOW is the TXV working?

IS THE TXV WORKING?

Example 1

R-4	10A	Temp.	& Pre	ssure	Chart
TEMP	R410	TEM	P R410	TEM	P R410
-60 -55 -50 -45 -40 -35 -30 -25 -30 -25 -30 -25 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5	$\begin{array}{c} 1.2\\ 3.4\\ 5.8\\ 8.6\\ 11.6\\ 14.9\\ 18.5\\ 22.5\\ 26.9\\ 31.7\\ 36.8\\ 42.5\\ 26.9\\ 31.7\\ 36.8\\ 42.9\\ 51.2\\ 52.5\\ 53.8\\ 55.2\\ 55.8\\ 55.2\\ 55.8\\ 55.2\\ 55.6\\ 58.0\\ 58.0\\ 58.4\\ 60.9\\ 63.8\\ 65.4\\ 66.9\\ 68.5\\ 40.9\\ 68.5\\ 70.0\\ 0\end{array}$	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 5 36 37 38 9 40 41 42	71.7 73.3 75.0 76.6 78.3 80.1 81.8 83.6 85.4 87.3 89.1 91.0 92.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9	44 45 46 47 48 49 50 55 60 65 70 75 80 90 95 100 105 110 115 120 135 130 140 145 155	127.3 129.7 132.2 134.6 137.1 139.6 142.2 155.5 169.6 144.2 200.6 217.4 235.3 254.1 274.1 295.1 317.2 340.5 365.0 390.7 417.7 445.9 475.6 506.5 539.0 572.8 608.1 645.0
			1		1.

CE

Lo pressure: 110 psi Temp of Vapor Line: 65

Superheat: 29 degrees

REFRIGERANT VAPOR (GAS) LINE

IS THE TXV WORKING?

Lo pressure: 140 psi Temp of Vapor Line: 55

Superheat: 5 degrees

Example 2

R-4	10A	Temp.	& Pres	sure	Chart
TEMP	R410	TEM	P R410	TEMP	P R410
-60 -55 -50 -45 -40 -35 -25 -20 -15 -12 -3 4 5 6 7 8 9 10 11 21 31 4 5	$\begin{array}{c} 1.2\\ 3.4\\ 5.8\\ 8.6\\ 11.6\\ 14.9\\ 22.5\\ 26.9\\ 31.7\\ 42.5\\ 48.6\\ 49.9\\ 51.2\\ 52.5\\ 53.8\\ 55.2\\ 55.2\\ 55.2\\ 55.6\\ 60.9\\ 62.3\\ 63.8\\ 65.4\\ 66.9\\ 68.5\\ 70.0\\ \end{array}$	16 17 18 19 20 21 22 23 24 25 26 26 27 28 29 30 31 32 23 33 34 35 36 37 37 38 39 9 40 41 42 43	71.7 73.3 75.0 76.6 78.3 80.1 81.8 83.6 85.4 87.3 89.1 91.0 92.9 94.9 96.8 98.8 102.9 105.0 107.1 105.0 107.1 111.4 113.6 115.8 1120.3 122.6 125.0	44 45 46 47 48 49 50 55 56 60 65 55 60 65 55 80 85 95 100 105 110 115 120 135 145 155	127.3 129.7 132.2 134.6 137.1 139.6 142.2 155.5 169.6 184.6 200.6 200.6 217.4 235.3 254.1 274.1 295.1 317.2 340.5 365.0 390.7 417.7 445.9 475.6 509.0 572.8 608.1 645.0

REFRIGERANT VAPOR (GAS) LINE

IS THE TXV WORKING?

- TXV's are typically designed for 15 degrees of superheat during normal conditions
 - If low superheat, 2-10 degrees you could have
 - Low airflow
 - Low Load(home is cool, 70 degrees or below)
 - Dirty filter
 - If hi superheat, 15-25 degrees you could have
 - Hi airflow
 - Hi Load (home is warm, 80 degrees or higher)
- If the subcooling is correct and superheat is above 30 degrees, the TXV has most likely failed

THE PERFECT SERVICE VISIT

- Upon arrival meet & greet the homeowner
- Place the thermostat in the Emergency heat position
- Go to the indoor unit, operate the system for 10 mins.
- Measure the supply voltage, Aux heat amp draw, and measure the temp split of the Aux heat only. Inspect the coil, filter, drain pans and see what type of metering device.
- Calculate CFM, make any adjustments needed to meet target airflow, 400 cfm +/- 50 cfm per a ton before proceeding
- CFM Validated
- Place the unit in cooling mode and measure your return DB and WB temperature
- Allow the unit to run in cooling for 15 mins, every system, every type of metering device and measure the Hi and Low pressures and the Liquid and Vapor line temperatures.
- Charge Validated

Total Capacity Formula

Capacity = CFM X 4.5 X Delta H

We now know the CFM All we need is the entering and leaving wet bulb temperatures Place the unit in cooling and allow to operate for 15 mins if not already running

Write it down, save it, memorize it, store it, print it, keep it, add it to your toolbox!!! Make money \$\$\$ with it!!!

THE PERFECT SERVICE VISIT

- Upon arrival meet & greet the homeowner
- Place the thermostat in the Emergency heat position
- Go to the indoor unit, operate the system for 10 mins.
- Measure the supply voltage, Aux heat amp draw, and measure the temp split of the Aux heat only. Inspect the coil, filter, drain pans and see what type of metering device.
- Calculate CFM, make any adjustments needed to meet target airflow, 400 cfm +/- 50 cfm per a ton before proceeding
- CFM Validated
- Place the unit in cooling mode and measure your return DB and WB temperature
- Allow the unit to run in cooling for 15 mins, every system, every type of metering device and measure the Hi and Low pressures and the Liquid and Vapor line temperatures.
- Charge Validated
- Measure WB and Dry bulb temperatures at the indoor unit

Electric Heat Method(recap)

- 2. 105F 74F = 31F (△T)
- 3. <u>31654</u> 1.08 x 31
- 4. $\frac{31654}{33.48}$ = 945 CFM

Voltage = 244 Volts Amperage draw = 38 Amps

Example 1

Cooling Mode

Formula:

Total Capacity = CFM X 4.5 X Delta H

Air Handler Supply

CFM: 945

Supply Air Temp: 54 DB 53.9 WBF Return Air Temp: 74 DB 64.3 WBF

- 1. Check chart convert WB to Heat
- 2. $RA(H) SA(H) = (\triangle H)$
- 3. cfm X 4.5 X (△H)
- 4. TOTAL BTU's produced

Cooling Mode

Example 1

Psychrometric Chart

CE

Can be found on the internet

W

ET BULB	ENTHALPY CHART											
emper-			W	'ET BULB	TO ENTH	ALPY CO	NVERSIC)N				
ATURE			- Wet bull	o tempera	ture in ter	nths of a d	egree Fal	hrenheit				
	.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
51	20.86	20.92	20.98	21. <mark>04</mark>	21.09	21.15	21.21	21.26	21.32	2138		
52	21.44	21.49	21.55	21. <mark>6</mark> 0	21.66	21.72	21.78	21.83	21.89	21,95		
53 🗕	22.82	22.86	22.12	22,09	22.24	22.30	22.36	22.43	22.49	22.55		
54	22.62	22.68	22.74	22 <mark>.</mark> 80	22.86	22.92	22.98	23.04	23.11	23.16		
55	23.22	23.28	23.34	23 <mark>.</mark> 40	23.46	23.52	23.58	23.64	23.71	23.77		
56	23.84	23.90	23.96	24 <mark>.</mark> 03	23.09	24.15	24.21	24.28	24.34	24.40		
57	24.48	24.53	24.59	24 <mark>.</mark> 66	24.72	24.79	24.85	24.92	24.99	25.05		
58	25.12	25.18	25.25	25,32	25.38	25.45	25.51	25.58	25.65	25.71		
59	25.78	25.85	25.91	25,99	26.06	26.12	26.19	26.26	26.33	26.39		
60	26.46	26.53	56.60	26 <mark>.</mark> 67	26.74	26.81	26.88	26.94	27.01	27.08		
61	27.15	27.21	27.28	27 <mark>.</mark> 35	27.42	27.48	27.55	27.62	27.69	27.76		
62	27.85	27.92	28.00	28 <mark>.</mark> 07	28.14	28.21	28.29	28.36	28.43	28.50		
63	28.57	28.65	28.72	28.79	28.86	28.94	29.01	29.08	29.16	29.23		
64 🗕	29.31	29.38	29.45	29.53	29.60	29.68	29.76	29.83	29.91	29.98		
65	30.06	30.13	30.21	38.25	30.37	30.45	30.52	30.60	38.68	30.76		
66	30.83	30.92	31.00	31.07	31.15	31.23	31.31	31.39	31.47	31.54		
67	31.62	31.70	31.77	31.85	31.93	32.01	32.09	32.17	32.25	32.33		
68	32.42	32.51	32.59	32.67	32.76	32.84	32.92	33.01	33.09	33.17		
69	33.25	33.34	33.42	33.50	33.59	33.67	33.75	33.84	33.92	34.01		
70	34.09	34.17	34.26	34.34	34.43	34.51	34.60	34.69	34.77	34.86		
71	34.95	25.04	35.13	35.22	35.31	35.40	35.48	35.57	35.66	35.74		
72	35.83	35.92	36.01	36.10	36.19	36.27	36.37	36.46	36.55	36.65		
73	36.74	36.83	36.92	37.02	37.11	37.21	37.30	37.39	37.48	37.57		
74	37.66	37.76	37.85	37.94	38.04	38.14	38.23	38.33	38.43	38.52		
75	38.61	38.71	38.80	38.90	39.00	39.09	39,19	39.28	39.37	39.47		
76	39.57	39.67	39.77	39.87	39.97	40.07	34.17	40.27	40.37	40.47		
77	40.57	40.68	40.78	40.88	40.98	40.08	41.18	41.28	41.38	41.48		
78	41.58	41.69	41.79	41.89	42.00	42.10	42.20	42.31	42.41	42.52		
79	42.62	42.73	42.83	42.94	43.05	43.15	43.26	43.37	43.48	43.59		
80	43.69	43.81	43.91	44.02	44.13	44.24	44.36	44.46	44.57	44.68		
81	44.78	44.89	45.00	45.11	45.23	45.34	45.45	45.57	45.68	45.80		
82	45.90	46.02	46.13	4.24	46.35	46.47	46.58	46.69	46.71	46.82		
83	47.04	47.16	47.28	47.40	47.52	47.63	47.75	47.87	48.00	48.10		
84	48.22	48.34	48.46	48.58	48.70	48.82	48.94	49.06	49.19	49.31		
85	49.43	49.56	49.68	49.70	49.92	50.05	50.17	50.29	50.41	50.54		

Measure any wet bulb temperature. Select the temperature from the left column, then the tenth of a degree from the columns to the right. This will be the heat content of one pound of air at the corresponding wet temperature. To determine enthalpy change, also known as △HT, locate the enthalpy of two wet bulb bulb readings subtract the enthalpy values.

Cooling Mode

Formula:

Total Capacity = CFM X 4.5 X Delta H

Air Handler Supply

CFM: 945

Supply Air Temp: 54 DB 53.9 WBF Return Air Temp: 74 DB 64.3 WBF

- 1. Check chart convert WB to Heat
- 2. 29.53 22.55 = 6.98 (△H)
- 3. 945 X 4.5 X 6.98
- 4. 29,682 TOTAL BTU's produced

Cooling Mode

Example 1

Formula:

Sensible Capacity = CFM X 1.08 X Delta T

Air Handler Supply

CFM: 945

Supply Air Temp: 55 DB 53.9 WBF Return Air Temp: 74 DB 64.3 WBF

- 1. 74 55 = 19 (△T)
- 2. 945 X 1.08 X 19
- 3. 19,391 SENSINBLE BTU's produced

Cooling Mode

Example 1:

We measured 244 volts power supply We measured 38 amps on the Elec. Heat We measured a 31 degree Elec. heat temp split We measured the WB and DB temps in cooling mode

We had 29,862 BTU's of Total capacity We had 19,391 BTU's of Sensible cooling

EVADO									CONDENSER	ENTERING AI	R TEMPERAT	URES ° F (° C)	
EVAPOR	RATORAIR		75 (23.9)			85 (29.4)			95 (35)			105 (40.6)	
CEM	EWB	Capacity MBtuh		Total	Capacit	Capacity MBtuh		Capacity MBtuh		Total	Capacit	y MBtuh	Total
01 M	°F (°C)	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**
							25HCE	430-30 Outd	oor Section W	ith FB4CNP03	OL Indoor Sec	tion	
	72 (22.2)	33.97	17.32	1.97	32.47	16.75	2.17	30.87	16.16	2.40	29.15	15.54	2.67
	67 (19.4)	30.80	21.30	1.97	29.42	20.72	217	27.96	20.13	2.40	26.39	19.50	2.67
875	63 (17.2)††	28.51	20.46	1.97	27.22	19.89	2.17	25.86	19.29	2.41	24.39	18.66	2.67
	62 (16.7)	27.99	25.15	1.97	26.74	24.55	2.17	25.44	23.90	2.41	24.07	23.17	2.67
	57 (13.9)	27.05	27.05	1.97	26.06	26.06	2.18	25.01	25.01	2.41	23.88	23.88	2.67
	72 (22.2)	34.85	18.48	2.00	33.25	17.90	2.21	31.57	17.30	2.44	29.76	16.66	2.71
	67 (19.4)	31.61	23.17	2.01	30.15	22.59	2 21	28.60	21.97	2.44	26.95	21.32	2.71
1050	63 (17.2)††	29.28	22.21	2.01	27.91	21.62	2.21	26.47	21.00	2.45	24.94	20.34	2.71
	62 (16.7)	28.88	27.53	2.01	27.62	27.37	2.21	26.36	26.36	2.45	25.12	25.12	2.71
	57 (13.9)	28.55	28.55	2.01	27.48	27.48	2.21	26.33	26.33	2.45	25.09	25.09	2.71
	72 (22.2)	35.15	18.97	2.02	33.53	18.39	2.23	31.81	17.78	2.46	29.96	17.13	2.73
	67 (19.4)	31.89	23.96	2.02	30.29	23.37	2.23	28.82	22.74	2.46	27.14	22.07	2.73
1125	63 (17.2)††	29.55	22.94	2.03	28.15	22.34	2.23	26.69	21.71	2.46	25.12	21.03	2.73
	62 (16.7)	29.18	29.18	2.03	28.02	28.02	2.23	26.83	26.83	2.46	25.55	25.55	2.73
	57 (13.9)	29.10	29.10	2.03	27.98	27.98	2.23	26.80	26.80	2.46	25.52	25.52	2.73
1125	63 (17.2)†† 62 (16.7) 57 (13.9)	29.55 29.18 29.10	22.94 29.18 29.10	2.03 2.03 2.03	28.15 28.02 27.98	22.34 28.02 27.98	2.23 2.23 2.23	26.69 26.83 26.80	21.71 26.83 26.80	2.48 2.48 2.48	25.12 25.55 25.52	21.03 25.55 25.52	

This is the Kw rating for the unit which means the unit running should consume 2.21 Kw 2.21 X 1000 = 2210 watts 2210 / your input voltage 2210 / 239 volts = 9.2 total system amps

Electric Heat Method(recap)

Formula: CFM = Voltage x Amperage x 3.414

 $CFM = \frac{1.08 \text{ x Temperature Rise } (\triangle T)}{1.08 \text{ x Temperature Rise } (\triangle T)}$

Air Handler Supply Voltage: 238 Volts Air Handler Section Amperage: 58 Amps Supply Air Temp: 114F Return Air Temp: 74F

- 1. 238 Volts x 58 Amps x 3.414= 47,127 BTUH Output
- 2. 114F 74F = 40F (△T)
- 3. <u>47,127</u> <u>1.08 x 40</u>

4.

Voltage = 238 Volts Amperage draw = 58 Amps

Example 2

Formula:

Total Capacity = CFM X 4.5 X Delta H

Air Handler Supply CFM: 1090 Supply Air Temp: 55 DB 54.6 WBF Return Air Temp: 74 DB 64.3 WBF

1. Check chart convert WB to Heat

Cooling Mode

Can be found on the internet

WET BULB	ENTHALPY CHART									
TEMPER-			W	'ET BULB	TO ENTH	ALPY CO	INVERSIC)N		
ATURE			Wet bull	b tempera	ture in ter	nths of a c	legree Fal	hrenheit		
	.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
51	20.86	20.92	20.98	21. <mark>0</mark> 4	21.09	21.15	21.21	21.26	21.32	21.38
52	21.44	21.49	21.55	21. <mark>6</mark> 0	21.66	21.72	21. <mark>7</mark> 8	21.83	21.89	21.95
53	22.02	22.06	22.12	22. <mark>0</mark> 9	22.24	22.30	22.36	22.43	22.49	22.55
54	22.62	22.68	22.74	22,00	22.86	22.92	22.98	23.04	23.11	23.16
55	23.22	23.28	23.34	23. <mark>4</mark> 0	23.46	23.52	23.56	23.64	23.71	23.77
56	23.84	23.90	23.96	24. <mark>0</mark> 3	23.09	24.15	24.21	24.28	24.34	24.40
57	24.48	24.53	24.59	24. <mark>6</mark> 6	24.72	24.79	24.85	24.92	24.99	25.05
58	25.12	25.18	25.25	25 <mark>.</mark> 32	25.38	25.45	25.51	25.58	25.65	25.71
59	25.78	25.85	25.91	25 <mark>.</mark> 99	26.06	26.12	26.19	26.26	26.33	26.39
60	26.46	26.53	56.60	26. <mark>6</mark> 7	26.74	26.81	26.88	26.94	27.01	27.08
61	27.15	27.21	27.28	27. <mark>3</mark> 5	27.42	27.48	27.55	27.62	27.69	27.76
62	27.85	27.92	28.00	28 <mark>.</mark> 07	28.14	28.21	28.29	28.36	28.43	28.50
63	28.57	28.65	28.72	28,79	28.86	28.94	29.01	29.08	29.16	29.23
64 🗕	29.31	29.38	29.45	29.53	29.60	29.68	29.76	29.83	29.91	29.98
65	30.06	30.13	30.21	38.25	30.37	30.45	30.52	30.60	38.68	30.76
66	30.83	30.92	31.00	31.07	31.15	31.23	31.31	31.39	31.47	31.54
67	31.62	31.70	31.77	31.85	31.93	32.01	32.09	32.17	32.25	32.33
68	32.42	32.51	32.59	32.67	32.76	32.84	32.92	33.01	33.09	33.17
69	33.25	33.34	33.42	33.50	33.59	33.67	33.75	33.84	33.92	34.01
70	34.09	34.17	34.26	34.34	34.43	34.51	34.60	34.69	34.77	34.86
71	34.95	25.04	35.13	35.22	35.31	35.40	35.48	35.57	35.66	35.74
72	35.83	35.92	36.01	36.10	36.19	36.27	36.37	36.46	36.55	36.65
73	36.74	36.83	36.92	37.02	37.11	37.21	37.30	37.39	37.48	37.57
74	37.66	37.76	37.85	37.94	38.04	38.14	38.23	38.33	38.43	38.52
75	38.61	38.71	38.80	38.90	39.00	39.09	39.19	39.28	39.37	39.47
76	39.57	39.67	39.77	39.87	39.97	40.07	34.17	40.27	40.37	40.47
77	40.57	40.68	40.78	40.88	40.98	40.08	41.18	41.28	41.38	41.48
78	41.58	41.69	41.79	41.89	42.00	42.10	42.20	42.31	42.41	42.52
79	42.62	42.73	42.83	42.94	43.05	43.15	43.26	43.37	43.48	43.59
80	43.69	43.81	43.91	44.02	44.13	44.24	44.36	44.46	44.57	44.68
81	44.78	44.89	45.00	45.11	45.23	45.34	45.45	45.57	45.68	45.80
82	45.90	46.02	46.13	4.24	46.35	46.47	46.58	46.69	46.71	46.82
83	47.04	47.16	47.28	47.40	47.52	47.63	47.75	47.87	48.00	48.10
84	48.22	48.34	48.46	48.58	48.70	48.82	48.94	49.06	49.19	49.31
85	49.43	49.56	49.68	49.70	49.92	50.05	50.17	50.29	50.41	50.54

Measure any wet bulb temperature. Select the temperature from the left column, then the tenth of a degree from the columns to the right. This will be the heat content of one pound of air at the corresponding wet temperature. To determine enthalpy change, also known as Δ HT, locate the enthalpy of two wet bulb bulb readings subtract the enthalpy values.

Cooling Mode

Formula:

Total Capacity = CFM X 4.5 X Delta H

Air Handler Supply

CFM: 1090

Supply Air Temp: 55 DB 54.6 WBF

Return Air Temp: 74 DB 64.3 WBF

- 1. Check chart convert WB to Heat
- 2. 29.53 22.98 = 6.55 (△H)
- 3. 1090 X 4.5 X 6.55
- 4. 32,127 TOTAL BTU's produced

Cooling Mode

Example 2

Formula:

Sensible Capacity = CFM X 1.08 X Delta T

Air Handler Supply

CFM: 1090

Supply Air Temp: 55 DB 54.3 WBF Return Air Temp: 74 DB 64.3 WBF

- 1. 74 55 = 19 (△T)
- 2. 1090 X 1.08 X 19
- 3. 22,366 SENSIBLE BTU's produced

Cooling Mode

Example 2

EVADOR		CONDENSER ENTERING AI									
EVAPOR			75 (23.9)			85 (29.4)			95 (35)		
CEM	EWB	Capacity MBtuh		Total	Capacit	y MBtuh	Total	Capacity MBtuh		Total	
OT M	°F (°C)	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	
							25HCE	436-31 Outd	oor Section W	ith FB4CNP03	61
	72 (22.2)	39.42	20.36	2.23	37.61	19.67	2.50	35.70	18.96	2.79	
	67 (19.4)	35.87	25.19	2.24	34.23	24.50	2.50	32.48	23.78	2.78	_
1050	63 (17.2)††	33.28	24.23	2.25	31.76	23.54	2.50	30.14	22.82	2.77	
	62 (16.7)	32.68	29.85	2.25	31.22	29.12	2.50	29.67	28.32	2.77	_
	57 (13.9)	31.63	31.63	2.26	30.46	30.46	2.50	29.20	29.20	2.77	
	72 (22.2)	40.13	21.34	2.27	38.25	20.63	2.54	36.25	19.90	2.83	_
	67 (19.4)	36.53	26.77	2.28	34.82	26.07	2.54	33.00	25.34	2.82	
1200	63 (17.2)††	33.92	25.70	2.29	32.33	25.00	2.54	30.64	24.26	2.82	_
	62 (16.7)	33.39	31.85	2.29	31.89	31.02	2.54	30.31	30.31	2.82	
	57 (13.9)	32.83	32.83	2.29	31.58	31.58	2.54	30.24	30.24	2.82	_
	72 (22.2)	40.68	22.25	2.31	38.72	21.53	2.58	36.66	20.80	2.87	
	67 (19.4)	37.04	28.29	2.32	35.25	27.57	2.58	33.37	26.81	2.86	_
1350	63 (17.2)††	34.40	27.11	2.33	32.75	26.38	2.58	31.00	25.62	2.86	—
E	62 (16.7)	33.95	33.95	2.33	32.55	32.55	2.58	31.13	31.13	2.86	
	57 (13.9)	33.84	33.84	2.33	32.51	32.51	2.58	31.10	31.10	2.86	=

32,127 TOTAL BTU's produced 22,366 SENSIBLE BTU's produced

THE PERFECT SERVICE VISIT

- Upon arrival meet & greet the homeowner
- Place the thermostat in the Emergency heat position
- Go to the indoor unit, operate the system for 10 mins.
- Measure the supply voltage, Aux heat amp draw, and measure the temp split of the Aux heat only. Inspect the coil, filter, drain pans and see what type of metering device.
- Calculate CFM, make any adjustments needed to meet target airflow, 400 cfm +/- 50 cfm per a ton before proceeding
- CFM Validated
- Place the unit in cooling mode and measure your return DB and WB temperature
- Allow the unit to run in cooling for 15 mins, every system, every type of metering device and measure the Hi and Low pressures and the Liquid and Vapor line temperatures.
- Charge Validated
- Measure WB and Dry bulb temperatures at the indoor unit
- Calculate capacity verify according to charts
- DOCUMENT, DOCUMENT, DOCUMENT
- Cleanup and have closing conversation with customer discussing your findings and the condition of their system.

SYSTEM ANALYZERS

- Fieldpiece
- Testo
- Imanifold

III Verizon LTE

2:11 PM

iManifold Report

Midlothian, VA 23113 Date of Service 7/6/2018 **Field Technician** Time of Service 1:52:34PM Work Performed iManifold ID Equipment Service A10460

Job Number

User Inputs / Measurements

Pressures	Value	VeriFied*
Suction Pressure	132.8 psig	~
High Pressure	326.8 psig	~
Temperatures		
Suction Pressure Saturation	45.5°F	~
High Pressure Saturation	101.27°F	~
Suction Line Temperature	60.8°F	~
Liquid Line Temperature	88.9°F	~
Discharge Line Temperature		
Outdoor Air Temperature	88.2°F	~
Superheat	15.3°F	~
Subcooling	12.4°F	~
Air Side Measurments		
Supply Air Dry Bulb	54.0°F	~
Supply Air Wet Bulb	53.1°F	~
Supply Air Relative Humidity	94.9%	~
Return Air Dry Bulb	72.9°F	~
Return Air Wet Bulb	64.8°F	~
Return Air Relative Humidity	65.3%	~
Return Air Static Pressure		
Supply Air Static Pressure		
Total External Static Pressure	-0.50inH2O	~
Estimated Airflow	1,050 cfm	~
Electrical: Condenser		
Nominal System Voltage	240 volts	
Phase	1	
L1 Voltage to Ground	120 volts	
L1 Current	11 amps	
L2 Voltage to Ground	120 volts	
L2 Current	11 amps	
Power Factor	0.95	
Electrical: Air Handler		
Nominal System Voltage	240 volts	
Phase	1	
L1 Voltage to Ground	120 volts	
L1 Current	1.5 amps	
L2 Voltage to Ground	120 volts	
L2 Current	1.5 amps	
Power Factor	0.95	
	0.00	

System Information

Type of System	Type of Metering Device
Heat Pump: Cooling Mode	Electronic TXV
System Configuration	Refrigerant
Split	R410A
Nominal Tonnage	Nominal Capacity (BTU/hr)
3	36,000
Type of Condenser	Nominal Airflow
18-22 SEER Ultra High E	1,200
Type of Evaporator	Target Superheat
High Sensible Capacity	15.0
Target Subcooling 10.0	

Condenser:

Furnace/AHU:

Evaporator:

System Performance

System Capacity		Evaporator Performar	nce
Adjusted BTU/Hour	34,580	Temperature Split	18.9
BTU/Hour Total	36,791	Target Temperature Split	16.8
Capacity Realized	106.4%	Deviation From Target	2.1
BTU/Hour Sensible BTU/Hour Latent Condenser Watts Air Handler Watts	22,163 14,628 2,508 342	System Electrical Efficient Total Watts Current EER	ciency 2,850 12.91
Sensible Heat Ratio	0.60	Dehumidification	
Bypass Factor	0.07	Lbs/Hour	13.60
		Gallons/Hour	1.63

Comments

This standard report is included with the current version of the iManifold App. To learn more about other reports and services visit www.iManifold.com the technician. © 2018 North Park Innovations Group, Inc. All rights reserved

CE

VeriF . iManifold

0

IN Verizon LTE 11:15 AM iManifold Report Richmond, VA 23234 Mechanicsville, VA 23116 Date of Service 7/19/2018 **Field Technician** Time of Service 10:47:49AM Joshua Goodman Work Performed iManifold ID Job Number Equipment Service A10460

User Inputs / Measurements

Pressures	Value	VeriFied*
Suction Pressure	133.3 psig	~
High Pressure	302.3 psig	\checkmark
Temperatures		
Suction Pressure Saturation	45.71°F	~
High Pressure Saturation	95.9°F	~
Suction Line Temperature	46.9°F	~
Liquid Line Temperature	85.1°F	~
Discharge Line Temperature		
Outdoor Air Temperature	81.1°F	~
Superheat	1.2°F	~
Subcooling	10.8°F	~
Air Side Measurments		
Supply Air Dry Bulb	56.1°F	~
Supply Air Wet Bulb	53.8°F	~
Supply Air Relative Humidity	86.1%	~
Return Air Dry Bulb	72.0°F	~
Return Air Wet Bulb	62.4°F	~
Return Air Relative Humidity	59%	~
Return Air Static Pressure		
Supply Air Static Pressure		6
Total External Static Pressure	-0.59inH2O	~
Estimated Airflow	1,578 cfm	~
Electrical: Condenser		
Nominal System Voltage	240 volts	
Phase	1	
L1 Voltage to Ground	121 volts	
L1 Current	13.1 amps	
L2 Voltage to Ground	102.8 volts	
L2 Current	13.4 amps	
Power Factor	0.95	
Electrical: Air Handler		
Nominal System Voltage	240 volts	
Phase	1	
L1 Voltage to Ground	121 volts	
L1 Current	3.8 amps	
L2 Voltage to Ground	120.8 volts	
L2 Current	3.8 amps	
Power Factor	0.95	

֎ ┦ 🖇 70% 🔳 VeriFi iManifol

Type of System Type of Metering Device Heat Pump: Cooling Mode Standard TXV System Configuration Refrigerant R410A **Nominal Tonnage** Nominal Capacity (BTU/hr) 42,000 Nominal Airflow Type of Condenser 13-16 SEER High Eff. 1,400 Type of Evaporator **Target Superheat** Standard Operation 17.0 Target Subcooling Condenser:

Split

3.5

10.0

Furnace/AHU:

Evaporator:

System Performance

System Information

System Capacity		Evaporator Performance	
Adjusted BTU/Hour	39,579	Temperature Split	15.8
BTU/Hour Total	39,260	Target Temperature Split	18.1
Capacity Realized	99.2%	Deviation From Target -2.3	
BTU/Hour Sensible BTU/Hour Latent Condenser Watts Air Handler Watts	27,137 12,123 2,814 873	System Electrical Efficient Total Watts Current EER	ciency 3,687 10.65
Sensible Heat Ratio	0.69	Dehumidification	
Bypass Factor	0.20	Lbs/Hour	11.24
		Gallons/Hour	1.35

Comments

This standard report is included with the current version of the iManifold App. To learn more about other reports and services visit www.iManifold.com

 $^{\rm tf}$ this column is checked, the values displayed were obtained directly by remote sensors. The value cannot be changed by the technician. \otimes 2018 North Park Innovations Group, Inc. All rights reserved

0

Thank You!

